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CHAPTER I

INTRODUCTION

Several Radar Target Identification (RTI) techniques have been developed at

The Ohio State University in recent years. Using the ElectroScience Laboratory

compact range a large data base of coherent RCS measurement has been con-

structed for several types of targets (aircraft, ships, and ground vehicles) at a

variety of polarizations, aspect angles, and frequency bands. This extensive data

base has been used to analyze the performance of several different classification

algori thins through the use of computer simulations. &

In order to optimize classification performance, Ksienski I1 concluded the
7

radar frequency range should lie in the Rayleigh-resonance frequency range, where

tie wavelength is on the order of or larger than the target size. For aircraft

and ships with general dimensions on the order of 10 meters to 100 meters it

is apparent. that the High Frequency (HF) band provides optimal classification

performance. Since existing HF radars are currently being used for detection and

tracking of aircraft and ships of these dimensions, it is natural to further investigate

hlie possibility of using these existing radars as the measurement devices in a radar

target classification system. - "/

A general radar target classification system is shown in Figure 1. The external

environment consists of a target which is to be classified, clutter source(s), noise

source(s), and possible calibration reference(s). The environment is observed by

I



the multifrequency radar through the propagation media. The signal processor

provides radar data which, when combined with a priori knowledge of the external

environment and knowledge of the radar system and propagatio n media, allows the

estimation of target features to be used for classification. These estimated features

of the unknown target are compared with high accuracy features of several targets

in a catalog set. The classification algorithm provides a measure of the similarily

of the unknown target to each catalog target. The catalog target whose features

most closely represent that of the unknown targets' features is chosen as the type

of the unknown target.

This study investigated various propagation conditions which allow different

target features to be estimated. These conditions were synthesized by various

channel models. The incorporation of these channel models into a radar target

identification system computer simulation provided estimates of resulting classifi-

cation performance. As a result, the relationship between channel conditions and

classification performance were found.

IIF radars are generally catagorized by the propagation mode by which they

are designed to operate, either 1) surface wave or 2) skywave. Each propagation

mode incites different characteristics into the classification system, and therefore

should be investigated independently.

Because of their unique propagation mechanism, surface wave radars have the

ability to look beyond the horizon with detection ranges up to 300 kin. Surface

wave attenuation is a function of many parameters, most importantly ground con-

duction and frequency 16]. In order to achieve practical detection ranges for given

transmitted power levels the radar wave usually must propagate over water. Fur-

thermore only a vertically polarized wave propagates significantly, thus limiting

2
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CHAPTER I

INTRODUCTION

Several Radar Target Identification (RTI) techniques have been developed at,

The Ohio State University in recent years. Using the ElectroScience Laboratory

compact range a large data base of coherent RCS measurement has been con-

structed for several types of targets (aircraft, ships, and ground vehicles) at a

variety of polarizations, aspect angles, and frequency bands. This extensive d.ta

base has been used to analyze the performance of several different classification

algorithms through the use of computer simulations.

In order to optimize classification performance, Ksienski [1] concluded the

radar frequency range should lie in the Rayleigh-resonance frequency range, where I

the wavelength is on the order of or larger than the target size. For aircraft.

and ships with general dimensions on the order of 10 meters to 100 meters it.

is apparent that the High Frequency (HF) band provides optimal classification

performance. Since existing HF radars are currently being used for detection and

tracking of aircraft, and ships of these dimensions, it is natural to further investigate

the possibility of using these existing radars as the measurement devices in a radar

target classification system.

A general radar target. classification system is shown in Figure 1. The external

environment consists of a target which is to be classified, clutter source(s), noise

source(s), and possible calibration reference(s). The environment is observed by

1!



the multifrequency radar through the propagation media. The signal processor

provides radar data which, when combined with a priori knowledge of the external

environment and knowledge of the radar system and propagation media, allows the

estimation of target features to be used for classification. These estimated features

of the unknown target are compared with high accuracy features of several targets

in a catalog set. The classification algorithm provides a measure of the similarity

of the unknown target to each catalog target. The catalog target whose features

most closely represent that of the unknown targets' features is chosen as the type

of the unknown target.

This study investigated various propagation conditions which allow different

target features to be estimated. These conditions were synthesized by various

channel models. The incorporation of these channel models into a radar target

identification system computer simulation provided estimate of resulting classifi-

cation performance. As a result., the relationship between channel conditions and

classification performance were found.

HF radars are generally catagorized by the propagation mode by which they

are designed to operate, either 1) surface wave or 2) skywave. Each propagation

mode incites different characteristics into the classification system, and therefore

should be investigated independently.

Because of their unique propagation mechanism, surface wave radars have the

ability to look beyond the horizon with detection ranges up to 300 ki. Surface

wave attenuation is a function of many l)aranmeters, most importantly ground con-

duction and frequency [6]. In order to achieve practical detection ranges for given

transmitted power levels the radar wave usually must propagate over water. Fur-

thermore only a vertically polarized wave propagates significantly, thus limiting

2
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the polarization diversity of our measurement system.

HF skywave radar utilizes ionospheric reflection as the propagation mecha-

nism. The skywave radar has an average detection range of 1000 kin to 4000 kin,

which when coupled with an antenna steerable in azimuth up to 1200, provides

coverage of over 15 million square kilometers 1121. The ionosphere supports HF

radio propagation at altitudes of 100 to 500 km and consists of ionized regions

referred to as layers which are commonly labeled D, E, F1 , and F2 . Ions at. these

altitudes are mainly produced by solar radiation which includes"particle radiation,

ultraviolet light, and x-rays. In general, it is the electron density distribution at, a

given altitude which effects the propagation of the EM wave to the greatest. extent.

The actual ion distribution at any time is a function of many factors includ-

ing source radiation intensity, angle between zenith and solar radiation rays, ion

distributions, and various ion combination mechanisms as described in Davies [14].

Therefore the ionosphere is continually changing and must be monitored in real-

time to accurately determine its present structure. It is the variation in electron

density with altitude which causes variation in the refractive index and results

in the bending of the ray path and its return to earth. It is important to note

the ionosphere only supports propagation over a limited band of frequencies, and

signals of different frequencies may travel along different ray paths.

The earth's magnetic field also affects the propagation of the radar wave. The

magnetic field and ionosphere produce a magnetoionic medium which supports

propagation modes with specific polarizations. These polarizations are a function

of the magnetic field, parameters of the ionosphere, and the direction of propaga-

tion as given in Davies [14]. As a result., a transmitted wave of a given polarization

may split into two ray paths which may or may not travel the same route to

the target. Therefore, in general, the polarization of the transmitted wave is not

4



necessarily the polarization of the wave which illuminates the target, and the po-

larization of the field scattered from the target is not necessarily the polarization

of the return wave at the receive antenna. Researchers such as Pilon and Headrick

[241 have addressed this situation as it applies to the RCS estimation problem.

This phenomena must be carefully investigated when selecting the polarization of

the catalog sets.

5



CHAPTER II

HF RADAR SIGNAL PROCESSING

2.1 DOPPLER PROCESSING

Many operation HF radars are used for the defection and tracking of targets

on or over ocean waters. A typical radar cell illuminated by a surface wave radar is

shown in Figure 2. The width of the observation cell is determined by the antenna

beamwidth at the radar operating frequency, while the length is determined by

the time gating of the received signal. To observe a cell at a distance R 1, from the

antenna with a cell length AR, the received signal is gated in time with values:

= (2.1)
c

2AR
T2 = r1 + (2.2)

C

where c is the speed of light., and (r2 - r) is the time gate used. With a multi-

frequency radar, the beamwidth of the antenna may change since the radiation

pattern is a function of frequency. Therefore the size of the cell varies with changes

of the radar's operating frequency.

In operation, the radar transmits a continuum of modilated pulses at some

given pulse repitition frequency (PRF). A total of N pulses are transmitted during

the coherent integration time TC, where:

N = PRF. Tc (2.3)

6
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Therefore N coherent data records are produced from the energy scattered

from the radar cell. These data are Doppler processed to produce a power spectral

density estimate containing N data, with a frequency resolution I and a band-
widh fom PRF + .R_

width from - TF to Theoretically, greater resolution may be obtained

by increasing of the coherent integration time; however changes in the ionospheric

ray path, sea state, and target place a limit on the practical integration time [22].

The resulting spectra shown in Figure 3 exhibits 1) a return from the target PT(f)

with induced doppler shift fT, 2) two large clutter returns P+B(f) and P-B(f) at.

+fB and -fB respectively, and 3) other relatively low power clutter covering the

spectrum.

2.2 DOPPLER SPECTRAL ESTIMATE INFORMATION CONTENT

Information contained in the spectral estimate may be used to estimate a

number of target features for classification purposes. Using fT, the relative velocity

of the target may easily be estimated, giving the RTI designer knowledge of the

probable class of the target (ships, general aircraft, high speed aircraft, etc.). In

addition, estimates of the power returned from the target. PT(f) and the power

returned from some reference PR(f) may be used to estimate RCS related target

features.

The two large power densities at +fB and -fB result from electromagnetic

wave scattering from ocean wave sets of a certain wavelength. The ocean waves

which excite this Bragg scattering mechanism have a wavelength dependent upon

the radar frequency [15]. As explained in detail by Trisna [1.5], Barrick [5], and

others, the amplitude of the Bragg returns are largely dependent upon sea state.

Large variations in the estimates /+B(f) and P-B(f) about. some means

(P+B(f)) and (P-B(f)) may be observed over a given observation period as noted

8
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by Headrick and Pilon [24]. Therefore the Bragg returns may best be described

as a random process with its mean being a function of the sea state at. that time.

An understanding of this process is important if the Bragg lines are to. be used as

a reference in the target feature estimation process.

2.3 STATISTICS OF SPECTRAL COMPONENTS

As discussed, the height of a target return or Bragg line in a given doppler

spectra is only an estimate of the power returned from the respective scatter.

Consider creating (M - 1) additional doppler PSD estimates of the same cell to

give a total of A1 doppler PSD estimates. Furthermore, create these additional

estimates by observing the cell over a continuous time span rOBS, where

tOBS = tEST X M (2.4)

as shown in Figure 4. Examples of real data obtained in this manner may be found

in Pilon and Headrick [24].

Note in Figure 4 that each spectra gives a different estimate for each Bragg

peak as well as the target spectral peak. However, by averaging M samples taken

over M consecutive CIT periods (k = 1,...M) one may produce an averaged doppler

PSD as shown in Figure 4. The averaged estimated power returned from the target,

approaching Bragg wave set, and receding Bragg wave set are given by Eq. (2.5),

Eq. (2.6), and Eq. (2.7) respectively.

1 'Al

_-T, fI IPT(fl) (2.5)

Al k PB (h (2.6)
1M

P-B(flA) kP-Bfl) (2.7)

k=l

10



If each of the samples on the right hand side of Eq. (2.5) are independent and

identically distributed, the application of the central limit theorem as discussed in

Degroot 110] gives:

liM i kpT( = lir fT (2.8)
k== M-00 T

where (PT(fl)) is the expected value of the returned power from the target as

discussed earlier. Likewise, application on the central limit theorem to Eq. (2.6)

and Eq. (2.7) yields Eq. (2.9) and Eq. (2.10) respectively.

M--io [I ~±kP+(f)] = ljmI P.B(fl)= (P+B(fl)) (2.9)
Aikl -'M-. -

ira' 1 'kPB(fl) lin _ ~ (f)= (P-B(fI)) (2.10)

Although this implies an infinite observation time which is impractical, it. also

implies that we can continually improve the accuracy of our estimates by taking

more samples.

Both the CIT and the observation time must be carefully chosen in order to

satisfy the requirement of independence and identically distributed samples. The

observation time must be selected to assure the identical distribution of samples. A

significant change in target flight path during the observation time may cause the

observed RCS to change and therefore (PT(fl)) changes voiding the identically

distributed criteria. Likewise a change in sea state during the observation time

may alter (P+B(fl )) and (P-B(f )) with the same result. In general, however, sea

states may remain unchanged for hours [15]. In addition, significant changes in the

observation path (such as passage of ionospheric disturbance for skywave radars)

limits the observation time. In fact, fluctuations in the ionosphere generally impose

the greatest restriction on the maximum observation time.

11
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There is a limit to the shortest possible integration time that produces inde-

pendent samples of the Bragg spectral liles. An experimental study by Barrick

[13] concluded that an integration tinie of 25 seconds or greater insures indepen-

dence of spectra, irregardless of sea state and cell size, at frequencies in the HF

band above 7 MHz.

The remaining question is, given a CIT of 25 seconds, what is the relationship

between the standard deviation values of P!S (f l ), and P(fi), PB(f) and A?

As discussed by Barrick [13], without assuming Gaussian statistics, there is little

to do other that record massive amounts of data and extract empirical results.

Using a Gaussian assumptions Barrick derived:

(pA (f))
pAJ ( =) - v (2.11)

where apI) s the standard deviation of the random variables given in Eq. (2.6)

and Eq. (2.7). Figure 5, from Barrick [13], shows the 90% confidence interval lines

derived using the salne statistical assumption. These curves give the RTI designer

insight into the tradeoffs between the observation time and the accuracy of the
estimates -A AlMf o PA' (fl ) are to

sB(fl) and P(fl). This is important if P+'B(fi) oa

be used in the estimation of target features for classification.

2.4 FREQUENCY SELECTIVE FADING

The Doppler spectral estimate resulting from data accumulated via skywave

propagation is distored to varying degrees by the ionospheric path. The distortion,

referred to as ionospheric contamination, is a function of parameters that may or

may not be under the control of the radar operator. It is imparitive, if data from

the resulting spectra are used in an estimation and classification procedure, that

13
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the distortion be removed or at least understood so it may be compensated for in

the process.

Consider a target. being illuminated by a single wave which travels along a

single ionospheric path. The ionosphere, which is in constant motion, induces a

Doppler shift on the rate and direction of the ionospheric movement. Now consider

illuminating this target N times by waves which propagate by the same layer whose

relative velocity remained unchanged during the time the dat.a was accumulated

(the CIT). The resulting spectra will be offset in doppler frequency by:

faf fset = y -v + -. , (2.12)

where v} is the relative ionospheric velocity with respect to direction of radar wave

propagation during the pass and \R is the radar wavelength. This phenomena,

referred to as Doppler shifting, is easily detected in the skewing of the spectra as

shown in Figure 6, and can be easily compensated for.

Next, consider the case where the CIT is relatively long such that the relative

velocity of the propagating layer has undergone considerable change. Each pass-

ing wave may have a slightly different doppler component induced by the quickly

changing ionosphere. The resulting contamination of the spectra, known as broad-

ening, is shown in Figure 7.

Spectral broadening is highly undesired for several reasons. First, any reduc-

tion in the amplitude of the target return will make the return more succeptable to

other noise, thus making any target featuire estimated from the data less reliable.

Second, the return from the target may not be significantly greater than the higher

order sea return and noise surrounding it, and thus the target, may be easily lost

in the clutter surrounding it. Third, if the target has a Doppler frequency which is

15
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near a Bragg frequency, the resultant spreading of the Bragg line may essentially

cover the target.

An additional cause of Doppler spreading is multipath propagaticn [22]. The

path or paths the wave takes between the transmit antenna and the target is a

function of many radar parameters including frequency, launch angle, and polar-

ization, as well as real-time ionospheric conditions. Different ionoshperic layers

may support, propagation of waves of the same frequency. This may result in two

or more waves with different induced doppler shifts both containing information

about the target being processed together, with a resulting spectra which exhibits

spreading.

A third cause of ionospheric distortion results from horizontal spacial inho-

mogenity within a given layer [22]. A ray path utilizes an area of a given layer

proportional in size to the beamwidth of the antenna. The larger the beamwidth,

the larger the area used for refraction, and the greater the effect of the spreading as

investigated by George and Marseca [22]. Since beamwidth scales inversely with

frequency, we recognize that the effect of spacial inhomogenity will decrease at

higher frequencies for propagation via a given layer. The RTI system designer is

interested in an antenna with a inimal beamwidth; however physical size poses

a design restriction. For example, a beamwidth of 1V may require aiteiiia dinien-

sions on the order of 2 km [12]. ,-

In order to use doppler spectral data in an estimation process, one first desires

a measure of the degree of the spectral contamination. In general, the width of the

Bragg lines gives a reasonable measure of ionospheric contamination [22]. A great

deal of research has gone into this area as well as the development of processes

designed to clean up the distorted spectra [22].

An alternate approach is to minimize distortion by judicious selection of radar
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parameters. The selection of an observation time will result in a trade-off between

resolution and broadening. Since spectral peaks are largely uncorrelated after 25

seconds (see Section 2.3) we desire the shortest CIT above 2.5 seconds that meets

the minimum spectral resolution demands of the system. This allows the greatest

number of independent spectra to be amassed in the least total observation tinie.

Coherent integration times ranging from 25 seconds to 100 seconds are common.

The amount of disturbance a given ionospheric region is undergoing determines the

degree of spreading for a given CIT. Typically, the E and ES regions are considered

most stable but do not always exist. During sunrise and sunset, the ionospheric

regions undergo rapid change and the degree of broadening significantly increases.

The judicious choice of radar operating frequencies can also greatly reduce

the effect of ionospheric contamination. There are however, important trade-offs

between the number of frequencies over which one may obtain data and the quality

of that data. The RTI system designer desires estimates of features at. a number

of frequencies. Through the use of vertical incidence ionograms and sweep of

frequency backscatter echoes one can determine the frequency bands least likely

to result in multipath distortion [25].

One possible method the RTI system designer may choose is to use an ex-

isting measure of spectral contamination with a limit, throwing away all spectra

contaminated beyond that limit, and making his estimates and classification de-

cision based only on the remaining data. This method is introduced by Georges

in [22]. A second approach is to create feature estinates using all possible spectra

and then weight the features in the classificaton process according to the degree

of distortion of the data from which the features were taken. A third approach

is to estimate features from the doppler spectra whose values are not. effected by
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the spreading. All major peaks in the spectra are equally effected by spreading

such that the ratios (PT(f)) , PT(I)), and (P+B(f)) all remain unchanged [23]

Therefore use of these ratio in feature estimation may provide estimates which are

relatively unaffected by Doppler spreading.
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CHAPTER III

MULTI-FREQUENCY PARAMETER ESTIMATION

3.1 GENERAL CONSIDERATIONS

All RTI algorithms utilize estimates of various features of the unknown target

to classify the target. Features such as radar cross section, intrinsic target phase,

and target speed may be considered good target descriptors. tlowever, there is a

trade-off between the number of features used in a system, the cost of the system

(processing time, etc.), and the resulting classification performance. As a result,

research has been directed at. finding the optimal types and numbers of features

which result in optimal performance at, minimal cost. given little or no constraints

in our ability to obtain estimates of these features [2], [4] and [8]. In an operational

HF radar classification system the numbers and types of estimated features may

be severely limited due to the constraints imposed by the HF channel.

The purpose of this section is to study the constraints the HF radar system ira-

poses on the classification system. Given these constraints, we can then investigate

which and how many of the features available should be used to obtain optimal

performance. Previous research has led to the development of RTI algorithms

which incorporate multi-frequency measurements of RCS and intrinsic phase in

various forms as classification features. The number and selection of frequencies

to be used has been studied with regard to resulting classification performance [2].

Different classification algorithms may place additional restrictions on frequency
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selection. However, in an operational HF RTI system, the bandwidth is likely to be

constrained by propagation parameters, thereby constraining the number and type

of features estimated. The different propagation modes of surface wave and sky

wave radars result in different types of bandwidth restraints on the two systems,

therefore they are investigated independently.

3.2 FREQUENCY BAND CONSIDERATIONS

The frequency range of a surface wave radar is not limited by the ability of

the system to propagate a wave over a large range, but. rather by the propagation

loss which increases with frequency [6]. A target which exists at some range from

the radar site may be illuminated over a frequency range of 5 MHz to 30 MHz;

however the propagation loss at the upper frequencies may result in the backscatter

energy from the target being on the order of the higher-order sea clutter return

or galactic noise level therefore making detection and any estimation of target

features impossible. In fact, the lower signal to noise ratio at. higher frequencies

may result in poorer quality estimates of features even though detection is still

possible.

Interference with other users in the HF band may also preclude the use of some

frequencies. During testing of an experimental system in Florida, interference in

the 8-13 MHz band was a significant factor in system operation [7]. In addition,

backscatter resulting from undesired E - region sky wave propagation periodically

effected sytem performance at. lower frequencies [7]. Therefore there are definite

limits to the frequency band over which estimates of features may be obtained.

Thus once system specifications have been set (type of targets, minimum

range, etc.) the frequency range for a surface wave radar may be determined.

Bands of 6 Mhz to 8 Mhz may expected to be used [7]. From here the RTI
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system designer must determine which features to estimate, at which frequencies

to make the estimates, and how many total estimates are needed in order to achieve

maximum classification performance.

The frequency band over which an HF sky wave radar can illuminate a target is

dependent on the current ionospheric conditions. Therefore real-time assessment

of the ionosphere is important in order to determine the band. Assessment of

the frequency band may be made through the use of backscatter sounding. A

backscatter sounding consists of radiating a frequency-modulated continous-wave

signal which is swept in frequency, then receiving the backscatter from the earth

after it has made two passes through the ionosphere [25]. An oblique backscatter

sounding is then produced by plotting the return power level as intensity versus

time and frequency. An example is given in Figure 8.

A target appears as a near horizontal line on the resulting plot, as shown in

Figure 8. A direct measurement of the frequency band over which the target is

illuminated may then be made. Typical values range on the order of 1 MHz to

8 MHz.

It must be noted that real-time monitoring of the ionospheric path in order to

determine the largest frequency band(s) over which a target may be observed are

not commonplace. Other uses of sky wave radars such as ocean waveheight and

wind direction maps do incorporate real-time ionospheric measurements to aid in

selection of frequency bands which are most immune to multipath distortion [21],

[231, and [25].

Considerable research has been and is being conducted in the area of real-

time ionospheric monitoring. It, is apparent that these monitoring systems can be

of great aid to an RTI system utilizing the HlF sky wave radar as its measurement

device.
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3.3 ABSOLUTE RCS ESTIMATION

The absolute radar cross-section of a target at frequency f may be estimated

by:

PAIGTX G;RX A2F'II]-

(f) = PT(f) (4r)3R4L WIT] (3.1)

where R is the one way path length the wave travels to the target, PA17 is the

average transmitted power, GTX is the transmitting antenna gain, GRX is the

receiving antenna gain, A is the wavelength, Fp is the one way propagation loss

factor, ICIT is the coherent processing time, PT(f) is the received power from

target, and Ls is a factor accounting for system losses. Therefore, to directly

estimate the absolute RCS of a target. at N frequencies, the above parameters

must be estimated at each frequency used. System parameters such as PAJ', (TX,

GRX, ICIT, f and LS are generally known or may be accurately estimated at.

each frequency. The power returned from the target PT(f) at each frequency may

be estimated from the appropriate Doppler spectra as discussed earlier. However, %

the range (R) and propagation loss (Fp) may be much more difficult, to estimate

depending on the propagation mode involved.

For a surface wave radar, the range to the target may easily be estimated

through time gating or other signal processing strategies. The propagation loss,

however, is a function of the sea state over the path as well as frequency and

thus becomes more difficult to accurately estimate; see Norton [6]. A sky wave

radar poses a problem when attempting to estimate the path length R. The first

difficulty results from path length being a function of the ionospheric structure

which is constantly changing with time. In addition, waves of different frequencies
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may travel differenct paths to illuminate the same target thus making R not only

a function of time but also of frequency [14].

To circumvent the difficulties of estimating Fp in a surface wave radar and R

in a skywave radar, a reference may be employed. Possible references include land

masses, ocean markers, or Bragg lines. Knowledge of the radar cross section of the

reference then allows estimation of the target RCS at. each frequency. A method

of calibrating Bragg lines for use as an absolute reference is given in Trisna [15].

3.4 RELATIVE RCS ESTIMATION

Bragg lines may also be employed as a relative reference. Figure 9 shows two

spectra obtained at two frequencies fl and f2. Knowing the expected change in

the mean of the Bragg line amplitude with frequency (which is assumed to be zero

in this example) the relative RCS estimates of the target can be constructed as

shown in Eq. (3.2) and Eq. (3.3).

I( ) (20 - 30)dB = -10dB (3.2)

T(f2) (15 - 30)dB = -20dB (3.3)

Therefore, the RCS of the target. at fl is 1/10th the RCS of the reference, and the

RCS of the target at f2 is 1/100th the RCS of the reference. Thus the relative

change of the target RCS has been estimated without absolute calibration of the

Bragg line. Theref-re, the use of the relative R.CS of the target, as a possible feature

for classificatio,, purposes should be evaluated.

3.5 RELATIVE PHASE ESTIMATION

Previous RTI studies have shown that intrinsic target phase often proves to

be a powerful feature when used for classification [2], [8]. However, difficulties in
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accurately estimating the path length to the target as in the case of the sky wave

propagation may preclude the accprat-e estimation of intrinsic target, phase. There-

fore an alternate method of utilizing target phase information has b-et1 studied.

Consider the phases of two radar signals at frequency fi and f2, which are

returned from the same target as given by Eq. (3.4) and Eq. (3.5).

21r( RfI
Of, = --Al + 011 (3.4)

2r(R
1 2 )012 = A 2 +0 (.

where Rf, is the round trip path length of wave at frequency fl, R f2 is the round

trip path length of wave at. frequency f2, A1 = c A2 = c , and Of, and Of2 are

the intrinsic target. phases at fi and f2 respectively.

By multiply;'ig Eq. (3.4) and Eq. (3.5) by A1 and A2 respectively and then

subtracting Eq. (3.4) from Eq. (3.5), we are left with:

Af2 0f2 -Aflf = 27r(R/ 2 - Rf1) + Af2O1 2 - AflOfl (3.6)

where (Rf2 - Rfl) is the difference between round trip path lengths at f2 and

fj respectively. Through careful selecton of Af = f2 - f, and using ionograms

to estimate the present structure of the ionosphere, it, may be possible to accu-

rately estimate (R2 - Rh, ). By multiplying this estimate by 27r radians, and then

subtracting this result. from Eq. (3.6), we are left with Eq. (3.7).

II = Af21f2 - A/f0Of (3.7)

Further division by Af2 gives Eq. (3.8), which for f2 f (Af small) may be

approximated by Eq. (3.9).

W=12 - ( ) Of, (3.8)
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W O Oh (3.9)

Therefore IV is a feature dependent on the change of the characteristic phase of

the target associated with f2 and fl.

Figure 10 demonstrates a physical interpretation of the It function for a

simple scattering case. Consider two targets, each with single distinct scattering

points at fi and f2 as shown. Each target has an intrinsic phase at. each frequency

related to the distance from some reference to the scattering point on the target.

as given in Eq. (3.10), Eq. (3.11), Eq. (3.12) and Eq. (3.13).

hAh20;T 2ir (2D?]) (3.10)
27r 2Df1 1

OT f (3.11)
f2 A12

2ir (2D'2)
OT (3.12)

O 27 ( 2i) (3.13)Af2

The resulting I' function for each target, is given by Eq. (3.14) and Eq. (3.15).

A 1T j 2  [ 2 7 12 ' - T (3 .1 4 )

2 T=T2 [2 (T2_DT2)]
2-f D 2  ] (3.15)

Note the TV function is a measure of the distance between the scattering for the

two frequencies, and not the absolute position of the scattering point, at. any one

frequency.
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A multi-frequency radar system illuminating a target, with Al total adjacent

frequencies could generate (M - 1) IV function estimates. These estimates could

then be employed as additional features to help identify the target. In general, the

larger the Af, the more the paths taken by the two waves differ, and the harder

it is to accurately estimate (Rf 2 - RfI ). However, large Af values would tend to

excite scattering points on the aircraft which are more separated in distance, pos-

sibly leading to 14 functions which contain more information about. the individual

targets. Therefore, our ability to accurately estimate the change in path lengths

with frequency for a given ionosl)heric condition may determine our maximum Af.

3
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CHAPTER IV

RADAR SYSTEM SIMULATION AND EVALUATION

STUDY

4.1 INTRODUCTION

In order to study the performance of possible radar target classification sys-

tems which utilize HF radars as a measurement device, a simulated system has

been developed. Over the past several years the ElectroScience Laboratory has de-

veloped a large multi-frequency data base consisting of aircraft, ship, and ground

vehicle radar signitures. This data base has been used to investigate several RTI

methods for the various classes of targets. A data base consisting of calibrated

monostatic radar returns of 5 aircraft was chosen for the experimental portion of

this study. Although classification of the ships and ground vehicles is of consid-

erable interest, the large amount of previous work with the aircraft. data base [21

provides a strong foundation of previous work for comparing results.

The ElectroScience Laboratory compact radar range facility was used to create

the data base. A basic block diagram of the measurement. system and a picture

of the actual facility is given in Figures 11 and 12 respectively. A more detailed

explanation of system may be found in [3]. In general, the measurement facility

simulates the illumination of a target by a radar wave which is approximately plane

in the region of the target (locally plane). This would be true of any HF radar

system. The complex backscattered fields from the target and other undesired
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scatters are then measured over a freqiuency band of 1-12 GHz. To obtain the high-

accuracy range-independent complex signiture of the target, a calibration sequence

described in detail in Kimball [17] was employed. Further detailes concerning data

scaling, windowing, and other signal processing details are given in Harris [26],

and Kimball [17]. Five metallic scale models of the Concorde, DC10, 707, 727, and

747 were used as targets. Silhouettes and dimensions of the real aircraft are given

in Figures 13 through 17. Specifications of the 5 aircraft data base are given in

Table 1.

4.2 RADAR SYSTEM SIMULATION

A flowchart of the Radar System Simulation and Evaluation (RSSE) program

is shown in Figure 18. The program begins with selection of N complex radar

signatures of the 5 targets at frequencies fl,f2,...,fN, where the frequencies are

chosen by the operator to represent those which may be encountered in a typical

HF radar system. In addition, one azimuth angle and one polarization is selected,

thus assuming these parameters have been accurately estimated. The target data

base is then accessed, the data are appropriately scaled [8], and two sets of data

denoted the test and catalog set. are created. Each element of the two sets may be

represented by:

Ak(f i)c3OC(W) = Rk(f i ) + jXk(fi) (4.1)

where

Rk(fi) = Ak(fj)cos(0k(fi)), (4.2)

X(f) = Ak(fi)sin(Ok(fi)). (4.3)

and
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Figure 13: Concorde silhouette (fromi Kamis [2]).

caternal Dimens~ial

Length overall 292 ft 7.2 In (I.25al
Height overall 17 it 7.0 In (17.55a)
Wing opan Is$ It 4.0 to (S@.Itai

Figure 14: DC10 silhouette (fromn Kamnis [2]).I
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External Dimenesns:

Length overall 152 It 11.0 in 146.6110)
weight overall 42 ft 1.0 In (22.93m)
Wing span 141 It *.0 to 144.42.)

Figure 15: 707 silhouette (from Kamis [21).

External *ineseleahs

Length Overall 152 It 2.0 in (46.698)
weight overall 24 ft 0.0 In (10.36)
Wing open 106 ft 0.0 In 42.928)

Figure 16: 727 silhouette (from Kamis 12)).
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External Dimensions:

Length overall 231 ft 4.0 in (70.51.)
leaght overall 63 ft 6.0 in (19.33m)
Wing $pan 191 ft 6.0 in 459.64m)

Figure 17: 747 silhouette (froin Kainis [2]).
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Table 1: Data base specifications (from Kamis [2]).

Low-Frequency Data Base

Frequency formatted data strings from I to 12 GHz

Availible polarizations:

Transmit Horizontal, Receive Horizontal (HH)

Transmit Vertical, Receive Vertical (VV)

Transmit Horizontal, Receive Vertical (VH)

Availible Azimuth angles @ Elevation = 00:

00 to 180' by 10' and 15° increments

Common aircraft. bandwidth:

7.6 - 60 MHz "Scaled"

Maximum number of usable frequencies: 209
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Ak(fi) = square root of the radar cross section of target at frequency

fi,

A corrupted feature vector rel)resenting an unknown target was constructed

" by first generating 2N total noise samples taken from an independent. Gaussian

zero-mean random process with noise power PN given by

t2PN = 10logl 0(- )dBsrn (4.4)

2

where a is the standard deviation of the process in meters [3]. The noise samples

were then added to the N high accuracy complex radar signitures of a known

target in the test set to create N corrupted complex data of the form:

Ru(fi) = RT(fi) + N(fi) (4.5)

Xu(fi) = XT(fi) + N'(fi) (4.6)

where RT(fi) is defined in Eq. (4.2) for target T in the test set, XT(fi) is defined

in Eq. (4.3) for target. T in the test set., and N(fi), N'(fi) are samples from the

independent zero-mean gaussian noise process.

The resulting N complex corrupted data which may be represented by :

+(f)+j ',,(fi) = A(fi )cj'(f i ), i = 1,..., N (4.7)

constitute the unknown target feature vector. This corrupted feature vector is

then tested against the feature vectors of the targets in the catalog set by means

of a classifier function as shown. A Euclidian distance metric algori him commonly

refferred to as a Nearest Neighbor (NN) algorithm was employed as the classi-

fier function. The NN algorithm computes a distance (d ,k) as a measure of the

distance between the unknown target u and the catalog target. k, as shown in

Eq. (4.8).

39

W"4C



DATA BASE]

NOSECOTMITDCATALOG

I - t

NIECONTMIESATCALO

Figure 18: ., RSS progrmf flwh. (fro Kmi11)

40



du,k = (.Fk(fi) - .Fu(f,)) 2  (4.8)

where Tk(fi) is the feature of target k at. frequency fi; extracted from the catalog

set, and .Fu(fi) is the feature of unknown target u at. frequency fi extracted from 1

the corrupted feature vector.

After testing against the appropriate features of all 5 possible catalog targets

(k = 1 to 5) the u:known target is classified as the catalog target which produced

the smallest distance measure. Whether the classification attempt was succesful

or not is known since the identity of the unknown target is known a-priori. This

simulation process is repeated 100 times for each test target, with independent

noise being added each time to create the simulated feature vector. Results of a

run for a given noise power are plotted as a confusion matrix as shown in Figure 19.

The average misclassification percentage has a margin of error since it. is the

result of a finite, and not an infinite, number of independent experiments. Details

of the error margin may be found in Degroot [10]. In general, the error margin is

on the order of 2 to 3 percent for 5 targets and 100 experiments [2].
a

4.3 CHANNEL SELECTION AND SIMULATION

In general, the ability to accurately estimate target features such as abso-

lute RCS and intrinsic phase may be described by defining channels with various

characteristics which affect the complex backscattered coefficients of the targets.

This section describes four channels with different characteristics which allow dif-

ferent target. features to be estimated. By appropriately processing the complex

backscattered components from the test set for each channel model, and alter-

ing the complex backscatter components of the catalog set if appropriate, the
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Classification Table for Noise pover - 10.00 DSSM

TT4\CT4 1 2 3 4 5 % MS-CLA.SS

1 04 1 S 10 0 16.00

2 4 06 3 7 0 14.00

3 0 0 100 0 0 0.00

4 13 9 S 73 0 27.00

0 0 0 0 100 0.00

Average mis-classification percentage : 11.40 5

His-classiflcation percentage is based on the test targets nane.

Figure 19: Confusion matrix (from Kamis 12]).
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resulting classification performance given the constraints of each channel may be

synthesized.

4.3.1 Coherent Gaussian Channel Model Simulation

A channel which adds coherent independent zero mean Gaussian noise to the

complex backscatter coefficients of target T is shown in Figure 20. Note that

both the amplitude and phase of the high-accuracy backscatter terms have been

corrupted. The resulting estimates R,(fi) and X,(fi) represent the corrupted real

imaginary parts of the comlplex backscatter coefficients of an unknown target to

be classified.

The implementation of the Channel 1 model into the RSSE program has

previously been described in Section 4.2. An algorithm denoted the Coherent

Nearest Neighbor Algorithm given by:

du,k - (1.4(fi) - + (-Vt(fi) - - 1 H~i))2 (4.9)

where Rk(fi), Xk(fW) are the complex backscatter coefficient, of catalog target k,

and Ru(fi), X,,(fi) are the simulated real and imaginary parts of complex backscat-

ter coefficient of unknown target i, is then used to classify the unknown target U

as being the catalog target '* such that duk* is inininized. It is iniportant to

note that intrinsic target phase, although not directly estimated at the output of

Channel 1, is utilized in the estimation process.

4.3.2 Non-Coherent Gaussian Channel Model Simulation

A channel which corrupts the amplitudes of the complex backscatter coeffi-

cients through coherent addition of independent zero-mean Gaussian noise, while

removing all intrinsic phase information is shown in Figure 21. This channel models
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a radar system where accurate estimation of intrinsic target phase is not feasible.

As a result, only estimates of backscatter amplitudes are available for classification.

The implementation of the Channel 2 model into the RSSE program has

previously been described in Section 4.2. An algorithm denoted the Non-Coherent

Nearest Neighbor Algorithm given by:

du,k [(Ak (h) - Au(fD2] (4.10)

where Ak(fi) is the high accuracy amplitude of complex backscatter coefficient, of

catalog target k, and Ru(fi is the simulated amplitude of complex backscatter

coefficient of unknown target v, is then used to classify the unknown target u as

being the catalog target k* such that du,k* is minimized.

4.3.3 Multiplicitive Component Channel Model Simulation

A channel which multiplies the amplitudes of an unknown target's backscat ter

coefficients by an unknown constant Al in addition to adding noise and removing

phase information is shown in Figure 22. This channel models a radar system

where accurate estimation of absolute RCS is not practical due to the lack of a

calibrated reference, but estimation of relative RCS as described in Section 3.4 is

feasible.

One possible method of using A" (fh) data out of Channel 3 involves the

removal of the unknown factor Al. To achieve this, the average power of the

corrupt vector out of Channel 3 is calculated by:

pM N (A(fi)) 2  (4.11)

pM = M 2 = 1 "

PM m 2 1 E(RT(fi) + N'(fi))2 + (XT(fi) + N(fi))2 (4.12)
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pM MP (4.13)

where P is the average power of the noise vector if Al 1. A new corrupt vector

with values given by:

Ru(fi) U--f (4.14)
SffAI

A R 4RT(fi) + N(fi))2 + (XT(fi) + N'(fi))2  (4.15)

may then be constructed. This resulting vector now has values independent of Al

while maintaining the ratio's of amplitude estimates at, different frequencies, i.e.:

AMlfi) ARU(fi)
A( - for 1 < i < N, 1 < j<N. (4.16)A 1 fj i (fj)- -

The A (fi) features may now be used for target classification with a properly

chosen catalog set.

The simulation of utilizing features passed through a channel with an unknown

multiplicitive component first required normalization of the catalog set.. The power

(or average RCS) of catalog target, k is given by Eq. (4.17).
1 = -Z(Ak(fi)) (4.17)

Dividing each data of catalog target, k by the square root. of Pk gives a new set. of

data, where the magnitude of each point in the vector is given by Eq. (4.18).

A(fi) AWOfi
Afk i= 1,N (4.18)

Ak(fS) represent the relative radar cross section features of catalog

target k which will be used in the classification routine. Note that the ratio of radar

cross section of any two frequencies fi and fj for catalog target k is preserved as

shown in Eq. (4.19).
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Figure 22: Multiplicitive AWCGN channel model.
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-1 < i < N , 1 < < N (.l.)(Ak(fj))2 = A '(Ij))2 ,

The normalization described in Eq. (4.17) and Eq. (4.18) is carrie(l out on all

catalog targets (k = 1 to 5). As a result, each catalog target, has an average power

(or average RCS) given by:

-R N_ 1 A ()) (4.20)

z=1
1 Ak1 2P (4.21)

-- 2  (4.22)

PR = Pk =1 (4.23)

Therefore, the overall average size of each target in the catalog has been removed.

The normalization is graphically depicted in Figure 23. The complex backscat-

tered amplitudes at frequencies fi and f2 for two catalog targets are depicted by

vectors f1 and f72. Vector V2 rel)resents a relatively large target with an average

RCS on the order of 1000 sin, and V1 represents a smaller target with an average

RCS on the order of 400 sin. Note the distance between the two points in space

representing the targets is on the order of 10 to 15 meters. After normalization,

the two targets are represented by vectors 1, and 1 2. Note the distance between

the points in space representing the two targets has significantly decreased.

The addition of coherent i.i.d. noise to the complex backscattered components

of a test target to form a corrupt. test vector was carried out. as described earlier.

After the noise was added the power of the test vector was calculated by:

P - E (RT(i + N(fi))2 + (XTU) + N'(f)) (4.24)
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The amplitudes of the simulated backscatter components were then normalized

by:

AR(f) = [RT(ii) + N(fI)) 2 + (XT(fi) + N'(fi))2 1 ?1,...,N(4.25)

producing the normalized amplitudes of the backscatter estimates of the unknown

target. This process would remove any unknown multiplicitive component from

the test vector as shown earlier. It is critical that the noise be added before the

normalization process is completed in order to directly compare the relative RCS

to the absolute RCS as possible classification features. If normalization is done

before noise is added, the signal to noise ratio will be much lower resulting in

significantly poorer classification performance. The unknown target may then be

tested against each of the catalog targets by use of a Nearest, Neighbor Algorithm

of the form:

rN2
duk = (Ak - Au(fz))2 (4.26)

where AR(fi) and AR(f 2 ) are given in Eq. (4.18) and Eq. (4.25) respectively, and

the identity of the unknown target is chosen as the catalog target k* for which d,, k

is mininized.

4.3.4 Additive Component Channel Model Simulation

r
Since the case of using a channel model with an unknown multiplicitive factor

A-I is of interest, it is natural to extend the problem to the case of an unknown

additive component C as shown in Figure 24. Time addition of the unknown com-

ponent C2 under the radical sign as shown represents the estimation of RCS of a

target at 2 or more frequencies, where only the difference in RCS is known. For

example, the difference in RCS of a target at. fI and f2 may be known to be 500 sm

50
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but whether the RCS at fi and f2 is 10 sin and 510 snl respectively, or 1000 sin

and 1500 sm is not known. Although this problen may or may not arise, it is of

considerable interest to the RTI designer to determine the achievable classification

performance given a channel with this constraint.

To remove the unknown additive component (1,2, the average power of the

corrupt vector at the output of Channel 4 is calculated by:

(4.27)
N

Pc = C2 + P (4.28)

where P is the average power if C2 = 0. The vector is then normalized by:

AD(f) -(AC(f,))2 -P ± PC] (4.29)

A = (f,)) [(RT(f1 ) + N( + (Xr(fi) + N'(f ))2

+ _ [P",,, + (C' - P)] 2 (4.30)

AD(f.) - [(RT(fi) + N(fi))2 + (Xr(fL) + N'(fj))2 + [P - P,,o,,,]]2 (4.31)

giving a new vector independent of C, while maintaining the difference in power

(RCS) between data at any two frequencies.

Features constructed from a channel with an unknown constant additive com-

ponent are referred to as relative difference RCS (RDRCS) features. The features

were implemened into the RSSE program by reconstructing each target in the

catalog set. so its new average power - A V is the same for all targets while the dif-

ference between RCS at a given frequency and the average RCS is maintained. The

same reconstruction of the corrupted test vector removes any unknown additive

component from the estimates. As a result., each target in the catalog set is given

.51
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the same average RCS, with the difference between the RCS at each frequency and

the average RCS being maintained.

The normalization of the catalog set. in the RSSE program was accomplished

as described above. Since the amplitude of the complex 1: :.;-'Cscatter coefficients

in the catalog set is actually the square root. of the radar cross section at. each

frequency, the amplitudes were reconstructed using:

AD(f) = [(Ak(fi)) 2 ± (Pnorm - Pk)] (4.32)

where

Pk = N (A ) (4.33)

An example of the normalization effect. on two catalog targets is given in

Figure 25. Consider target. I in the catalog set with RCS values 500sin, 400sin, and

300si, and target. 2 with RCS values of 600si, 1000si, and 1400sin at frequencies

fl, f2 and f3 as shown. The average RCS over the three frequencies is 400sin and

1000si for targets 1 and 2 respectively. After the normalization, the average RCS

of both targets is 1600sm (Pnor, = 1600smi) as shown. As a result,, absolutc

target size is lost; however, the difference between the RCS at, any frequency and

the average RCS is maintained.

Coherent noise was added as always to the complex backscatter coefficients of

target T of the test set to create the noisy feature vector. The average power of

the noisy feature vector was then calculated as:

N (A (M) • (4 .3 4 )

The amplitudes of the noisy feature vector were then reconstructed as:

A =(f-) [(Au(fi)) 2 + (Pn., - PU)] " (4.35)

53



2000-'la

,800 -

O60oo __ ~ - -- ,- R

1400 . .10

o /
z1200-

W 1000

o

4400
ZOO- - -

200-

f, f2 f

FREQUENCY

x TARGET I ABSOLUTE RCS
9 TARGET I NORMALIZED RCS

0 TARGET 2 ABSOLUTE RCS
I3 TARGET 2 NORMALIZED RCS

Figure 25: Normalization of two t argets.

54

- a
r '~ ~~ ~ -



These data represent the estimates of the amplitudes of the complex coefficients

passed through channel 4 after the additive unknown component has been removed.

As a result., the Nearest. Neighbor Algorithm given by:

IrN P 2
duk I A(fi)- (4.36)li=l

where (fi) and Aj(f,) are given by Eq. (4.32) and Eq. (4.35) respectively, was

used to classify the unknown target u as the catalog target k* for tile k* such that

du,k* is minimized.

It. is important to note that although the power of the catalog vectors and

corrupted vector is altered, the signal-to-noise ratio of the initial corrupted vector is

not changed, and thus classification performance will not be function of the power

level chosen for normalization. Simulations were repeated using normalization

power levels of 4000 sin, 6000 sin, and 8000 sm to insure this result.

4.4 ASSESSMENT OF MISCLASSIFICATION CURVES

A typical set of misclassification curves is shown in Figure 26. Performance of

a given curve with respect, to another may be related by the relative noise power %

inmnuity. The noise power immunity of a curve is determined by the difference

between the noise power of the curve and the reference curve evaluated at a con-

stant misclassification level (generally between 5 and 40 percent). The noise power

immunity is an apl)roximate measure of the additional noise power which must cor-

rupt the according data to produce a curve equivaletit to the reference. A positive

noise power immunity indicates better classification performance with respect to

the reference, while negative noise power immunity indicates the opposite.

Y"
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CHAPTER V

RSSE RESULTS FOR AWGN CHANNELS

5.1 Frequency Band Study

The frequency band over which a target a.t a given range may be illuminaled

is limited. As a result., only estimated features from the limited band are available

for classification. Thus a study has been conducted to find the effect of frequency

band size on classification performance for the four channels described in Sections

4.3.1 through 4.3.4.

Figure 26 shows the change in performance as the frequency l)and of channel 1

is decreased. Note the overall performance is not, significantly effected. Figure 27

demonstrates the greater loss of performance with decreasing frequency band when

channel 2 used. A significant loss of noise power immunity of approximatel 8 dB-smi.

is encountered when the frequency band decreased from 4 Mltz to 2 MHz.

Similarly, Figure 28 demonstrates the even greater decrease in classification

performance encountered by decreasing the frequency band when channel 3 intro-

duces an unknown multiplicitive component. Losses on the order of 5 and 12 dB-sm

noise power for a given misclassification percentage appear as the frequency band

is decreased from 8 MfIz to 4 MHz, and then 4 Mhlz to 2 Mhlz. Figure 29, which - "

was generated utilizing the unknown additive component channel, expresses the -,.

most significant decrease in performance as the band is decreased from 8 MHz to

4 M H z. "

U,4
"I"

-. 

' ' 

.

'



Figures 26 through 29 demonstrate some qualities unique to each of tihe four

channels. Channel 1 demonstrated a very small change in performance compared

with the three other channels as the frequency band was significantly. decreased.

Both channel 2 and channel 3 showed a much larger degredation in performance

when the band was reduced to 2 MHz as compared to the reduction to 4 MHz.

This implies a frequency band of not less than 4 MHz would be highly desirable

given a channel which does not allow the estination of phase information. This

also implies that a doubling of the frequency band from 4 MHz to 8 MHz does not

provide the same degree of improvement in classification perfornance. Therefore

the cost of having the ability to obtain features over an 8 Mhiz frequency band, such

as a second radar site, may not be warranted. Conversely, channel 4 demonstrated

significant performance degredation in both cases of band reduction. Therefore,

given a channel with an unknown additive component, a significant increase in

performance may be obtained by extending the frequency band beyond 4 MHz.
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Parameter Under Observation: Frequency Band Size
Channel Model: Coherent AWGN Channel
Azimuth angle: 45
Start Frequency: 8.0 MHz
Stop Frequency: Varies
Number of Frequencies: 10
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Figure 26: Coherent channel band size study.
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Parameter Under Observation: Frequency Band Size
Channel Model: Noo- Coherent AWC -N Channel
Azimuth angle: 45
Start Frequency: 8.0 MlHz
Stop Frequency: Varies
Number of Frequencies: 10
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Parameter Under Observatio,: Frequency Band Size

Channel Model: Multiplicitive Component AWGN Channel
Azimuth angle: 45
Start, Frequency: 8.0 MHz
Stop Frequency: Varies
Number of Frequencies: 10
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Parameter Tinder Observalion: Frequency Band Size
Channel Model: Additive Component AWGN ChannelAzimuth angle: 45

Start. Frequency: 8.0 MIIz
Stop Frequency: Varies
Number of Frequencies: 10
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8.0 Mllz to 10.0 MHz Band .
---- 8.0 MHz to 12.0 Mllz Band :
- -8.0 MHz to 16.0 Mlt1z Band .

Figure 29: Additive component channel band size study.
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5.2 Number of Features Study

A study was conducted to deterinine the relationship between the number of

features used and the classification performance for the four channels. Previous

research [2] concluded that the mininmm frequency sampling interval which will

satisfy Shannon's sampling criteria is given by:

C
3.5L 

5

where c is the speed of light and L is the length of the target. Therefore given an

average target length of 50 meters, one finds approximately 2, 3, and 5 frequency

samples are required to meet the above criteria for band widths of 2 Mllz, 4 MHz,

and 8 Mttz respectively. These values were used as minimum guidelines to be met

for each corresponding frequency band. Since Kamis [2] examined the effect of the

number of features at large frequency bands (Fband > 8 MI1z) for channels 1 and

2, these bands for these channels were not inchded in the study.

Figure 30 shows a significant increase in noise immunity of approximately

5 dB-sni as the number of features through channel 1 are increased from 3 to 5

to 10 over the 2 MHz band. The increase in noise immunity of approximentally 5

dB-sm demonstrates that classification performance can be significantly improved.

Figure 31 exhibits the smaller noise immunity of approximately 3dB-sm associated

with channel 2 as the number of features is increased from 3 to 10. Figure 32

demontrates an almost constant increase of noise immunity of 3 dB-slm to 5 dB-sm

as the number of features is inrreased from 3 to 5 to 10 to 20 in the channel with an

unknown nmltipicitive component (channel 3). Figure 33 demonstrates a similar

increase in performance for the unknown additive component ch annel.

Figures 30 through 33 illustrate that classification performance may be ira-

proved by increasing the number of features when limited to a 2 MHz frequency
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band, irregardless of the channel. Channel 2 demonstrated the smallest increase in

performance of the three, however, the increase is much greater than that observed

by Kamis [2] when increasing the number of features over larger frequency bands

of 8 MHz and 22 MHz.

Figures 34 and 35 show the relationship between the number of features and

classification performance over 4 MHz and 8 MHz frequency bands for channel 3.

Both figures indicate an additional noise immunity of approximated 3 to 5 (lB as

the number of features is increased from 5 to 10. A smaller increase in perfor-

mance is obtained by increasing the number of features from 10 to 20 and 10 to

15 as shown in Figures 34 and 35 respectively. Therefore, as frequency band is

increased, channel 3 demontrates a decrease in the amount of improvenent in clas-

sification performance obtained by using an increased amount of features. Note

that channel 2 displays this same property.Figure 36 demonstrates that the addi-

tive component channel exhibits the same properties as channel 2 and channel 3

concerning frequency band, number of samples, and classification performance.

Therfore, Figures 30 through 36 indicate that if one is limited to a small

frequency band, it may be worth the cost of the additional processing time to

obtain estimates at. 10 or 20 frequencies regardless of the channel. However, if a

larger frequency band is available, the additional processing cost may outweigh

the slight increase in classification performance obtained through the additional

features.

I
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Parameter Under Observation: Numiber of Features
Channel Model: Coherent AWCGN Channel
Start Frequency: 8.0 Mllz
Stop Frequency: 10.0 Mhlz
Number of Frequencies: Varies
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Parameter Under Observation: Number of features
Channel Model: Non-Coherent AWGN Channel
Azimuth angle: 0
Start Frequency: 8.0 MHz
Stop Frequency: 10.0 MlIz
Number of Frequencies: Varies
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Figure 31: Non-Coherent channel number of features s(udy (8.0-10.0 MHz).
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Parameter Under Observation: Number of Feattires
Channel Model: Multiplicitive Component A\VGN Channel
Azimuth angle: 0
Start. Frequency: 8.0 MHz
Stop Frequency: 10.0 MHz
Number of Frequencies: Varies
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Figure 32: Multiplicitive componlent(801. ).hannel numlber of features study
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Parameter U T nder Observation: Number of Features
C'hanniel Model: Additive Component AVG N Channel
Azimuth angle: 0
St-art Frequency: 8.0 Mh1z
Stop Frequency: 10.0 M11z
Number of Frequencies: Varies
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Parameter Under Observation: Number of Features
Channel Mo(el: Multiplicitive Component AWGN Channel
Azimuth angle: 0
Start. Frequency: 8.0 MHz
Stop Frequency: 12.0 MHz
Number of Frequencies: Varies
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Figure .34: Multiplicitive component channel number of features study ,
(8.0-12.0 Mllz). "'
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Parameter Under Observat im: Nii mer of Features
Channel Model: Multiplicitive Component AWC N Channel
Azimuth1 angle: 0
Start Frequency: 8.0 MlHz
St-op Frequency: 16.0 Mllz
N umber of Frequencies: Varies
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Parameter lln(ter Observation: Numler of Features
Channel Model: Additive Conponent AWON (hannel
Azimuth angle: 0
Start Frequency: 8.0 M117,
Stop Frequency: 16.0 Mllz
Number of Frequencies: Varies ,0o
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5.3 Comparison of AWGN Channels Performance

A direct comparison ot the lour channels has beeni made in ternis of clas-

sification erformaiice. Figure 37 demonstrates the dependence of classification

performance on the channel given a 2 MHz frequency band. A significant perfor-

niance degredation of at. least. 15 dl3sin is experienced for channel 2 with respect to

channel 1. The classification performance of chiannels .3 and 4 is further degraded

as a result, of target information lost in the normalization processes used to remove

the unknown (niultiplicitive or additive) components.

Figure 38 shows the resulting performance of the same channels over a wider

4 MHz frequency band. The performance of channels 2, 3, and 4 improves sig-

nificantly with respect to the performance of channel 1. At lower noise powers,

channel 3 is found to outperform channel 4 by a surprisingly wide margin of ap-

proximat.ely 2 dBsni.Figure 39 compares the performance of the 4 channels over an

8 MHz bandwidth. The additive colponent. channel now outperforms the multi-

plicitive channel. Note that the performance of channels 2. 3, and 4 all fall within

5 dBsm of each other.

Figures 37, 38, and 39 together indicate that channels with unknown inul-

tiplicitive or additive comiponents wiich must be removed will always degrade

l)erforinance. This is understandable, since information concerning target size is

lost in the normalization process used t.o remove the unknown (multiplicitive or ad-

ditive) component.More importantly, these figures indicate that the performance

of a channel with an unknown additive component (channel -4) degrades at a faster

rate with a narrowing frequency band than a channel witi an unknown multi-

plicitive component (channel 3). Figures 37 and 38 clearly indicate that knowing

the difference in absolute RCS between frequencies (channel 4) will not provide
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any better performance over knowing only the relative change in RCS (channel 3).

Finally, the three figures indicate that without phase information classification

performance decreases dramatically with a decrease in frequency band.

Figures 40 and 41 show the classification performance of the four channels

using 5 and 15 features respectively in the 8 MHz frequency band. Again, chan-

nel 1, which utilizes phase information, performs significantly better. Note that

the relative performance of each channel with respect to the olher three remains

almost constant in both figures. Therefore all three channels tend to suffer the

same loss of performance with the lowerinig of the number of frequencies in this

large 8 MHz frequency band.

Figures 42 displays the resulting poor performance of channels 3 and 4 when

the number of features is limited to three and the firequency band (2 MHz) is

limited. The 9 dB-sm increase in noise power inmunity of channel 2 with respect

to channel 3 at the 20% misclassification level is one of the largest changes in

performance found between the two channels.

Figure 43 demonstrates the relatively large improvement in classification per-

formance of channel 3 with respect to channel 2, especially at noise power levels of

less than 5 dB-sm. This increase in relative classification performance demostrates

that the performance of channel 3 degrades faster than the performance of chan-

nel 2 when the number of features is decreased. This same property was noted in

the number of features study. Finally, Figure 44 demonstrates an even smaller de-

crease in classification perfornimaice for channel .3, firt her backing the performance

loss - number of frequency relationship for channel 3 at small bandwidths.

Figures 45 and 46 compare the channels over a different band from 20 Nhiz to

24 MHz and 20 MHz to 28 Mllz. The channels demonstrate the same characteris-

tics over these bands as over the S Mhz to 12 Nhllz and 8 MHz to 16 NIHz bands.
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Therefore the channel characteristics which have been noted (d0 not appear t~o be

dlependent on the exact. band in the HF spectrum used, but, only depend on the

size of the band.
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Parameter Under Observation: Channel
Channel Model: Varies
Azimuth angle: 45
Start Frequency: 8.0 M11z
Stop Frequency: 10.0 Mllz
Number of Frequencies: 10
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Figure 37: Channel study over 2 Mlfz hand.
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Parameter JUnder Obhservat ion: Channel
Channel Model: Varies
Azimuth angle: 45
Start Frequency: 8.0 Illlz
Stop Frequency: 12.0 Mlhz
Number of Frequencies: 10
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Parameter TInder Observation: Channel
Channel Model: Varies
Azimuth angle: 45
Start Frequency: 8.0 MHz
Stop Frequency: 16.0 MHz
Number of Frequencies: 10
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Figure 39: Channel study over 8 MHz band.
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Parameter Unider Observation: Ci aniielI

Azimuth angle: 0
Start Frequency: 8.0 MHz
Stop Frequency: 16.0 hz
Number of Frequencies: 5
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Parameter Under Observation: Channel
Channel Model: Varies
Azimuth angle: 0
Start F'equency: 8.0 M11z
Stop Frequency: 16.0 MHz
Number of Frequencies: 1.5
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Figure 41: Channlel study for 1.5 frequency, 8 MHz b~aud. 4
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Parameter Under Observation: C.hannel
Channel Model: Varies
Azimuth angle: 0
Start Frequency: 18.0 MlHz
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Parameter Under Observation: Channel UChannel Model: Key

Azilmuh angle: 0
Start Frequency: 8.0 MHz
Stop Frequency: 10.0 MIz
Number of Frequencies: 5

0.0 5.0 D.0 60 20,0 25.0 3

i!>

5020 360

.- 0

0 / o

NOISE POWER (DB-X "

Coherent Channel

Non-Coherent Channel,!

* ..

Multillicitive 'omionent Channel

'a.

Figure 43: Channel study for 5 frequency, 2 MHz band. -

. 0

3%



Parameter Under Observation: Channel
Channel Model: Key
Azimuth angle: 0
Start Frequency: 8.0 Mhz
Stop Frequency: 10.0 MHz
Number of Frequencies: 10
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Parameter Under Observation: Channel
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Azimuth angle: 45
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CHAPTER VI

RELATIVE PHASE CHANNEL MODEL

6.1 Feature Implementation

The development of the IW feature in Section 3.5 was intended to provide

information related to the intrinsic phase of the target at times when the accurate

estimation of absolute path length is difficult to achieve. It has previously been

shown that given certain channel conditions one may create (N - 1) target features

from the difference of the intrinsic phases at adjacent frequencies. These (N - 1)

features, coupled with N estimates of the RCS of the target at. each frequency,

provide a total (2N - 1) features of the target which may be used for classification

purposes. The (N - 1) IV features contain additional information about the target

provided they are not too severely affected by noise. If used correctly in a clas-

sification algorithm along with the amplitude features, these IV features should

improve classification performance over that. of using the amplitude features only.

A variation of the nearest-neighbor algorithm was developed to incorporate

the IV features in the classification process. Previous experience has shown the

nearest-neighbor algorithms can provide powerful classification performance results

[2], and therefore have been used as the starting point. In addition, the use of a

distance metric makes intuitive sense in a problem of this nature. Consider two

catalog targets (k = 1, 2) whose backscatter amplitudes ( RCS) measured at fl,

/2, and f'3 are plotted in 3 dimensional space as in Figure 47. These two targets
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have two corresponding intrinsic IV values each given by Eq. (6.1 ) and Eq. (6.2)

which may be plotted in 2-dimensional space as shown in Figure 48.

flk(fl) = Ok(f2) - L2Ak(fh), k = 1,2 (6.1)

Wk(f 2 ) = Ok(f3) - f kf2),'  k = 1,2 (6.2)
f2

where Ok(f,) = intrinsic phase of target K at frequency fi.

Next consider estimating the corrupted am)litude and corrupted It' values of

all unknown target - at. the corresponding frequencies fl, f2, and f 3 and plotting

the estimates in Figure 47 and Figure 48 as shown. Use of a Euclidian distance

metric provides four distinct measures as given in Eq. (6.3), Eq. (6.4), Eq. (6.5),

and Eq. (6.6).

"d AdA, = [(A2(fi) - A(fi))]"  (6.3)

F3

U- (2f)A)=FA. (f,)) (6.4) f

d V1 = [(II(fi)- Wu(fi))2 (6.5)
li=1

,,,2 = (wT2 (fj) - (6.6)

A final distance between the unknown target and the two catalog targets may

then be constructed as:

UI = d , + pQdl (meters) (6.7)
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d W = ,2 + pQdW2  (meters) (6.8)

where the p term provides a weighting of the TV metric, while the Q term provides

a unit conversion from an angle measure to a length measure.

The Q term, labeled the catalog normalization factor, is a measure of the

separation of the targets in the catalog set. In Figure 47 , the average separation

of the two catalog targets in terms of amplitude features may be calculated by

Eq. (6.9).

3 1
D [Z(A2(fi) - Ai(fi)) 2  (meters) (6.9)

Likewise, the average separation of the catalog targets in terms of IV features may

be calculated by Eq. (6.10).

r2 1
D' V = (WI(,,)- (f,)) 2  (degrees) (6.10)

The ratio of these two terms, as given by Eq. (6.11), provides the catalog

normalization factor.

DAQC DA (6.11)

C

The catalog normalization factor may be viewed in the following manner. Fig-

ures 47 and 48 show the same two catalog targets in terms of two different met.-

rics separated by two different average distances as calculated in Eq. (6.9) and

Eq. (6.10). By multiplying the TV features of the catalog set. by Q (rescaling the

phase feature space), one can find the new average separation of t lie catalog targets

in terms of the IV features as:

21
DC = (QW12 (f,)- Q1(f,)) (6.12)
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2 2. II

M1= Q2 (2(,)- (f))2] (.13)

C '= Q'D - (6.14)

W = DA (6.15)

Therefore multiplying the catalog TV features by Q has the effect of convert-

ing the TV feature space to an aniplitude feature space by using average target

separation as the conversion factor. Likewise, the rescaling of d"V by Q as shown S

in Eq. (6.7) and Eq. (6.8) has the same resulting effect.

The value of p, the TV feature weight, reflects the emphasis placed on the IIV

features in the classification process. For p=O, the TV features are ignored, and the

classification decision is solely determined by the amplitude distance. For p >1,

the normalized TV features are more heavily weighted than the amplitude features.

In order to determine a proper value of p, one must consider the radar system

from which the estimates of amplitude and phase are made. In general, the de-

gree of corruption of the WV features, with respect to the amplitude features, will

determine the emphasis or de-emphasis of the normalized IV-dist ance measure.

6.2 Channel Simulation

The relative phase channel model was simulated as follows. The 1V values

of the catalog set were first created using the complex backscattered coefficients

previously loaded in the catalog set. The normalization factor of the catalog set

was then created by:

b Z 5=b~l [EN 1 (A.(fi) Ab(fi)) 2 ]2

Qcatalog - - - -b 1 (6.16)

EbL75= 7Nb+ -V (,V,(f) - lb(f,)) 2j

I
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where Aa(fi), Ab(fi) are the backscatter amplitudes of catalog targets a and b,

and I1a(fi), IVb(fz) are the 11? values of catalog targets a ;nd b. A corrupt test set

vector was formed through the addition of coherent zero mean Gaussian noise to

a high accuracy test, set vector as described earlier. The (N - 1) noisy I' feat ures

were then created from these coherent. backscatlter amlplitudles by:

RfU a (T(i±) - + ta ( i= 1, - 1(6.17)
RT~fi I A+1 RT(fi)

where

XTf = XT(fU) + N', and

RT(f) = RT(fU) + N",

given RT(fi), XT(fi) are the high accuracy complex backscatter coefficients of

test target T at frequenct fi ( or fi+l), and N', N" are i.i.d. Gaussian noise

samples. Note that the distribution if WVu(fi) is going to be dependent on AT(fU)

and the distribution of Al(fi). This may be visualized in Figure 49. This graphic

description of the addition of coherent noise to a large and small target shows the

strong dependence of standard deviation of "Vu (fi) on the uncorrupted amplitude

AT(fi) of the data point. Therefore targets with large RCS values are biased

toward having I' features that are less corrupted for a given noise power.

An understanding of the relationships between the distributions of IF1"u(fi ) and

Au(fi) for given values of AT(fU) and levels of noise power is important in order

to determine sensible values of p. To accomplish this, a study was conducted by

first selecting targets with a wide range of backscatter amplitudes. The standard

deviation of the IV features were estimated as described in Degroot [10] by:

[1°° (m 1Vr(I)-W1e)S- 0] m) (6.18)
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where WVT(fi) is the high accuracy WV feature and lV(fi) is the rh independent

corrupt IT feature. The min statement specifies the minimum angle between the

values to eliminate branch cut. effects. In a similar manner, the standard deviation

of the corrupted amplitude features was calculated by Eq. (6.19).

= 100 - A'(f))2] (6.19)

Estimates of o,11'f..) versus A(fi) at noise power levels of 10 dB-sm and 20 dB-

sm are shown in Figure 50. Note that ag,(fi) is highly dependent. on both A(fi)

and the noise power. As a result, one may desire to weight the distance between an

unknown I' feature at, frequency fn and the catalog WV feature at. f, dependent

on the amplitude feature A,, at that. frequency. The standard deviation of the

amplitude feature (o, (fi}) was found to be almost independent of A(fi) and only

dependent on noise power. Estimated values were or Y 0.3 sm and 1.0 sin at.

noise power values of 10 dBsm and 20 dBsm, respectively. The previous study

led to the development of two It feature distance measurements. The standard

amplitude distance measurement given by:

U, (Ak(f) - (6.20)

was used to measure the distance betweer, catalog target k and unknown target U

in terms of amplitude features. One TV distance measurement was given by:
1

= " - (6.21)
1d~k N-I f) IVU(fM)j[i=1 /

where Wk(fi) and Wu(fi) represent the catalog and corrupted 1I' features respec-

tively. A second W distance measurement was given by:
1 6

-N-i 2

2d"" R(A(f,)) (1VL ) - (6.22)
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where R(A(f i )) is a function of the corrupted amplitude of I lie test vector. R( A(fi ))

is a weight which approaches one for large values of A(fi) (T A(fi) small) and ap-

proaches 0 for small values of A(fi) (a-(M large). Note that the aipplitudes of

the corrupted vector must. be used and not the amplitudes of the catalog presently

being tested agianst. Use of the uncorrupted catalog amplitudes would bias 2 dU, .

to be small for small targets and large for large targets, therefore biasing the

classification decision.

6.3 Experimental Results

Classification runs were made using Eq. (6.21) for Id'V to deterilnine the

effects of p on the classification algorithm. Figures 51, 52, and 53 show the results

of nine tests run over three separate frequency bands. Figure 51 demonstrates

an average improvement of 6 dB-sm of noise power immunity using the weight of

p = 1.0 over the small 2 Mhlz band. However, Figures 52 and 53 demonstrate a

loss in performance as the 1d1,k distance weight is increased. These results indicate

that the id" distance measure is less than optimal since it weights all II" featuresthatthelUu,k

equally, irregardless of the amount of corruption of the I feature.

A second set of tests were performed to investigate possible functions for

R(A(fi)) given in Eq. (6.22). In this set of tests the weighting was set at. p = 0.5.

The two functons chosen for R(A(fi)) were:

R(A(f)) = ( (6.23)

36.0

and

R(A(f))) - 36.0 ) (6.24)
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since a value of A(fi) = 36 net.ers corresponds to a RCS of approximately 1300

square meters, or 31 dB-sni, corresponding approxinately to the largest RCS value

in the 5 target library at hF frequencies.

Figure 54 demonstrates improvement. in classification performance for the rel-

ative phase channel over the non-coherent channel, however the increase in perfor-

mance is less than that shown in Figure 51. Figures 55 and 56 show little or no

improvement in classification performance of the relative phase channel over the

non-coherent channel when utilizing the 2du,k measure. Therefore our choices of

R(A(.fi)) are far from ideal.

Overall this study has indicated that for small frequency bands, the relative

phase channel described may improve performance over the non-coherent channel

if the relative phase estimates are used as described. However, at, larger frequency

bands, the use of relative phase information proposed appears only to deteriorate

performance. This may be due to several factors. First., the development of the

use of the relative phase features has been based on intuitive judgement, and not

proven estimation theory. Therefore the use of the phase features while making

logical sense, may be far from the optimum use of relative phase as a classification

feature.

An alternate method of utilizing relative phase information involves estima-

tion of the unknown targets phase. Given a set of coherent bsckscatter amplitudes

one may use the Cross Correlation Algorithm to provide a maximum likelihood

estimate of the unknown target phase, thereby minimizing the conditional risk for

a uniform cost function. The phase estimate may then be used to aid in classify-

ing the target. Research has shown that use of the Cross Correlation Algorithm

will consistently improve classification performance over use of amplitude onlY

estimates [8].
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It, is critical to note these results are highly dependent Oni ilie noise mlodel

used in the study. Given~ a different, noise modlel where the noise Corrupting the

amlhitude and phlase features is independent, different results would 4~e expected.
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Parameter Tnder Observation: p
(hannel Model: Relative Phase Channel

Azimuth angle: 45
Start Frequency: 20.0 Mllz
Stop Frequency: 24.0 Mllz
Number of Frequencies: 10
It' Distance Measure: Idu,
p: Key
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Figure 52: II' feature high 4 Mltz band weighting study.
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Paraneter ITnder Observation: p
Channel Model: Relative Phase Channel
Azimuth angle: 30
Start, Frequency: 8.0 Mhlz
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Figure 53: 1V feature low 4,111-1z band weighting study.
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Parameter Under Observation: Imlividial Distance W,.ighIings
Channel Model: Relative Phase Channel
Azimuth angle: 45
Start Frequency: 8.0 M1lz
Stop Frequency: 10.0 Mliz
Number of Frequencies: 10
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p: 0.5
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Figure 54: IV" feature 2 Mliz band distance weight study. "
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Parameter Under Observaiinn: Individliml I)islance Weightinigs
Channel -Model: Relative Phase Channel
Azimuth angle: 45
Start Frequency: 20.0 Mllz
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Figure 55: 1V feature high 4 Mltz band distance weight study.
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Parameter UTnder Observalion: Individual Di.$ anre Weightings
Channel Model: Relative Phase Chunel
Azimuth angle: 30
Start Frequency: 6.0 MHz
Stop Frequency: 12.0 Mllz
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Figure 56: IV feature low 4 MHz band (listance weight study.
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CHAPTER VII

FADING CHANNEL MODEL STUDY

7.1 Implementation

Multipath propagation is a common occurence in ionospherically propagated

signals. In the radar problem, inultipath phenomena generally results in the re-

ceived signal being the result of the two or more signals adding in and out of phase

at the receive antenna. One signal, which travels the expected path, may be con-

sidered deterministic in nature. The other signals, which travel undesired paths,

may best be described as a stochastic process since the paths they take through

the ionosphere may be considered less stable. As a result, the propagation path

may best be described as a fading channel [271.

A fading model representing the estimation of features from multipath prop-

agated signals as shown in Eq. (7.1) was implemented in the RSSE program [28].

AF(fi)d (f i ) = caAT(fi)jT(fi)+(1-_a2)21 AT91 Z(fi) °9

C=" (' i =l,N(7.1)
9 1

where aAT(f )7e j OT(fi) is the deterministic component, (1 -j ) -AT(fi )Z( fi )ciZ (i )

denotes the faded component, and a is the weight of the deterministic component.

The paraumeter AT(f)e j O( f i ) is the high accuracy complex backscatter compolnent

of target T at frequency fi, Z(i) is the random amplitude of faded component

taken from a correlated or uncorrelated random process, and OZ(i) is the random

phase of faded component taken from a correlated or uncorrelated random process.
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Construction of the simulated feature vector is shown in Figure 57. The

complex backscattered data are simply scaled by the chosen variable a, where

0 < a < 1, to construct the deterministic component. Construction of the faded

components are more complex. The magnitude of the high accuracy backscattered

data is first scaled by (1 - a2 to ensure the vector resulting from the sum of

the deterministic and faded components has a total power equal to tile test set.

vector used. Next, the random samples Z(i) are constructed by first generating

samples from a white zero-mean Gaussian random process with a variance (o2) of

one. These samples are then passed through a filter with an impulse response h(i)

where i =0 to N - 1. The output process has an autocorrelation function given

by:

N-1
Rz(kI)= E h(i)h(k + i), -N+I < k< N-1 (7.2)

as described in [9].

The total power in the process { Z(i) } is then given by:

N-I
RZ(O) = E (h(i)) 2  (7.3)

i=O

Therefore, by selecting filter values h(i) such that the total power of the process

{ Z(i) } is one, the resulting power of the faded channel vector will be equivalent

to the power of the test. vector used. The filter values used were constructed from

the filter function by:

11(i) = I i = 0, ... , N - 1 (7.4)
[ c./= -2*i]

where h(i) is the filter function, and T is the correlation coefficient. selected by user

the so that RZ(O) equals 1 independent of the value N selected. By increasing

from zero ({ Z(i) } highly correlated) to infinity ({ Z(i) } uncorrelated) the
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operator simulates various degrees of correlation between the faded components of

a given measurement. vector.

The faded components are then weighted by the samples from the random

process { Z(i) }. Phase is assigned to each random faded amplitude by taking

samples from an i.i.d. process whose random variables are uniformly distributed

over the interval -ir to +ir. The resulting complex deterministic components and

complex faded components are then summed, producing the faded cI. mnel vec-

tor. Additive white Gaussian noise is then added coherently to the faded channel

vector as described earlier. The simulated vector represents the outputr of a faded

channel with additive Gaussian noise. By applying the techniques described in

sections 4.3.1 through 4.3.3 to the faded channel vector, variations of the faded

channel model such as loss of phase information or the addition of an unknown

multiplicitive component may be synthesized. As a result, three faded channel

models with characteristics analogous to those described in 4.3.1 through 4.3.3

and titled channel IF, channel 2F, and channel 3F respectively were investigated.

Three studies were conducted utilizing the faded channel model. First the re-

lationship between the deterministic component weight (a) and the classification

performance for the three channels was investigated. Next, the correlation coeffi-

cient T was varied while maintaining a constant deterministic component, weight.

Finally, direct comparison between the three faded channel models was conducted.

7.2 Deterministic Weighting Study

Figure 58 shows the the degradation of classification of channel F1 as a is

decreased. Note that, significant degradation of performance is only found at a=0.5.

Figure 59 shows a significant degradation of classification performance at. a = 0.75

and a = 0.5 for channel F2. Classification using channel F3 demonstrates an
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Figure 57: Faded channel imnplementiation block diagram.
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approximate 10 percent degradation in performance as a is decreased from 1.0 to

0.9, and from 0.9 to 0.75, as indicated in Figure 60. Thus, these figures indicate that

the performance of channel F2 may be severely degraded by a low deterministic

weight.

Figures 61, 62, and 63 are similar to the previous three figures with the ex-

ception of a smaller frequency band of 2 MHz. More significant degradation of

performance for channel F1 is noted at a=0.75 and a=0.5 as noted in Figure 61,

which was expected with the smaller frequency band. Figure 62 demonstrates a

decrease in performance of 25 % for a given noise power as a is varied from 1.0

to 0.9. Likewise, Figure 63 shows the same large decrease in the ability using

channel F3 as the deterministic weight. is decreased.

Overall, the performance tends to degrade by a much larger amount for the

same changes in a at the 2 MHz band. Therefore the deterministic weight becomes

an increasingly important characteristic of the faded channel when the frequency

band decreases.

A third set of Figures (64, 65, and 66) were constructed using one-half the

number of data points over the same 8.0 MHz to 10.0 MHz band. Further decreases

in classification performance with decreased deterministic weighting are expressed

for all three channels as expected.
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Parameter Under Observation: Determiiiiistic Weight
Channel Model: Non-Coherent, Faded Channel
Azimuth angle: 0
Start Frequency: 8.0 MIlz
Stop Frequency: 12.0 Mlz
Number of Frequencies: 10
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Correlation Coefficient: 0.5
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Figure 59: Weighting study for non-cohereni 4 N1llz band faded channel)
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Param ter Under Observation: Deferiinistic Weight.
Channel Model: M utiiplicitive Component Faded Channel
Azimuth angle: 0
Start Frequency: 8.0 MHz
Stop Frequency: 12.0 M1z
Number of Frequencies: 10
Deterministic Weight: Key
Correlation Coefficient: 0.5
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Figure 60: Weighting study for mulililicitive 4 N llz band faded channel.
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Parameter Tn der Observalion: Deterministic Weight
Channel Model: Non-Coherent Faded Channel
Azimuth angle: 45
Start Frequency: 8.0 MHz
Stop Frequency: 10.0 MHz
Number of Frequencies: 10
Deterministic Weight: Key
Correlation Coefficient.: 0.5
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Figure 62: Weighting study for non-coherent 10 feature - 2 MHz band faded
channel . 111
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Parameter Under Olservation: DPeermiiiislic Weight
Channel Model: Multiplicitive Component Faded Channel
Azimuth angle: 45
Start Frequency: 8.0 Mhliz
Stop Frequency: 10.0 MHz
Number of Frequencies: 10
Deterministic Weight: Key
Correlation Coetficient: 0.5
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Figure 63: Weighting study for mulliplicitive 10 feature - 2 MHz band faded

channel, 112
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Parameter Under Observal ion: lel erini istic W~cigiit
C hannel Model: Coherent Faded Ch~annel
Azimuth angle: 45
Start. Frequency: 8.0 MITIz
Stop Frequency: 10.0 Milz
Number of Frequencies: 5
Deterministic Weight: Key
Correlation Coefficient: 0.5
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Parameter IUnde.r Observnf$iou: fletermiist ic Weight i

('hatinel Model: Non-C(olicrent Faded Ch annel
Azimuth angle: 45
Start Frequency: 8.0 MlHz
Stop) Frccjueiicy: 10.0) MHz
Number of Frequencies: 5
Deterministic Weight: Key
Correlation Coefficient: 0.5
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Parameter UInIder Observatiom: Delerninistic WVeiuht
Channel Model: Multiplicitive Component Faded Channel
Azimuth angle: 45
Start. Frequency: 8.0 Ml-z
Stop Frequency: 10.0 Mllz
Number of Frequencies: 5
Deterministic Weight: Key
Correlation Coefficient: 0.5

0. lob1& 20.0 25.0 ,O~

o C

4I ° ii

\ ,

0.9

-0.9

Figure 66: Weighting study for inultiplicitive 5 feature -2 Mttlz band faded

channel.
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7.3 Correlation Study

Figures 67, 68, and 69 demonstrate the effect of the correlation of the faded

components on the performance of the three faded channels over a 2 Mlz frequency

band. In this band, channel F1 does not demonstrate a decrease in classification

performance with increasing correlation. Channel F2 exhibits a 4% decrease in

performance when faded coml)onents become highly correlated as shown in Fig-

ure 68. Channel F3 again shows major improvement as a classification feature

when the correlation increases as displayed in Figure 69.

Figure 70 demonstrates the decrease in classification performance of chan-

nel F1 resulting from an increased correlation of the faded components. In Fig-

ure 71, channel F2 exhibits a significant change in classification performance at.

%P=0.1, however the overall performance is quite poor in all cases due to the low

weighting (an = 0.75) of the deterministic component. Figure 72 shows the increase

in classification performance of channel 3 as the faded components become more

correlated. The significant gain of 3 to 5 dB-sm in noise power immunity indicates

the correlation coefficient may be an important parameter in a faded channel which

exhibits an unknown multiplicitive component.

Figures 67 through 72 indicate several relations between classification perfor-

mance and correlation of faded components. Channel F1, which utilizes intrinsic

phase information tends to show a slight decrease in performance with an increase

in correlation. This may possibly due to the corrupted amplitude of the target

appearing consistently smaller (or larger) at each frequency due to the correlation

of the Z(i) samples. As a result, the target. may appear to be closer to a smaller

(or larger) target in terms of the Nearest Neighbor Algorithm, and therefore be

misclassified.
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The tendency of channel F2 to increase perfornance as the faded components

become uncorrelated backs up the previously developed theory. However, since

channel F2 removes all phase information and passes only the noisy absolute am-

plitude backscatter components to the classifier, one may expect to see a greater

decrease in performance with increasing correlation than channel 1. There is no

strong indication of this behavior, however.

Channel F3 which adds the unknown multiplicitive component which must

be removed as described in section 4.3.3 demonstrates a significant increase in

performance with an increase in the correlation of the faded components. As

reasoned earlier, highly correlated faded components teid to make the target look

larger (or smaller) across the band. As a result, the average RCS of the unknown

target will tend to be larger (or smaller). The process of normalizing the corrupt.

backscatter amplitudes to remove the unknown multiplicitive component also tends

to remove the avcragc contribution of the faded component. As a result, the

normalized amplitude feature is more dependent on the deterministic component

of the faded channel, resulting in better classification performance.
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Parnineter UTnder Observatfion: Cnrrel aftioii
Channel Model: Cohierent Faded Channel
Azimuth angle: 45
Start Frequency: 8.0 MHz
Stop Frequency: 10.0 MHz
Number of Frequencies: 10

- Deteruministi c Weight: 0.9
Correlation Coefficient: Key

0.0 &.0 10. 5.0 2W. 25.0

I * I I

I

L.

T. =0.0

___ ___ ' = 0.001

Figure 67: Correlation study for cohierent 2 MITz band faded channel.
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Parameter Under Observat ion: ('orirlation
Channiiel Model: Non-Coliereit. Faded Chiannel
Azimuth anigle: 45
Start Frequency: 8.0 MHz
Stop Frequency: 10.0 Milz
Number of Frequencies: 10
Deterministic Weight: 0.9
Correlationi Coefficient: Key
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Parameler Unider Observat ion: C'orrel atjowl
Channel Model: Multiplicifive Component Faded Channel
Azimuth angle: 45
Start Frequency: 8.0 Mllz
Stop Frequency: 10.0 Mhlz
Number of Frequencies: 10
Deterministic W~eight.: 0.9
Correlation Coefficient: Key
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Parameter Under Observation: Corr,.lain

Channel Model: Coherent Faded Channel
Azimuth angle: 0
Start Frequency: 8.0 MHz
Stop Frequency: 12.0 MHz
Number of Frequencies: 10
Deterministic Weight: 0.75
Correlation Coefficient: Key
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Figure 70: Correlation study for coherent 4 MHz band faded channel.
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Param1eter U nder Obserwition: Correiation
Channel Model: Non- Colievent Faded Chiannel
Azimuth angle: 0
Start Frequency: 8.0 MHz
Stop Frequency: 12.0 Mhlz
Number of Frequiencies: 10
Determninistic Weight: 0.75
Correlation Coefficient: Key
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Parameter ITper Observation: ('orelalinn
Channel Model: Multiplicitive Component Faded Channel
Azimuth angle: 0
Start Frequency: 8.0 MNIz
Stop Frequency: 12.0 Mlhz
Number of Frequencies: 10
Deterministic Weight: 0.75
Correlation Coefficient: Key
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Figure 72: (Correlatioii study for nuiltiplicifive 4 NlHz band faded channel.
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7.4 Comparison of Faded Channels Performance

A final study was conducted to directly compare the performalnce of the 1-S

three channels for different, correlation coefficients, determi ni stic weights, frequency

bands, and feature number coml)inations. Figures 73, 74, and 75 directly compare

the three feature types using a 2 MHz band for different values of o. Although per-

formaiince is relatively poor for both channels Fl and F2, channel F2 significantly

outperforms channel F1 for a = 0.7.5 and a = 0.5 (Figures 74 and 75 respectively).

Channel F1 significantly outperforms the other two for all values of a as shown.

A comparison of the three feature types for various values of q, is given in

Figures 76, 77, and 78. Figures 76 and 77 demonstrate that for a small Ts (highly

corielated faded components), channel F3 may actually outperform channel F2.

The figures also demonstrate the strong performance of channel F1 irregardless of

the correlation between faded components.

Figures 79 and 80 compare the three faded channels for two different values of 0

a. Both figures demonstrate the superiority of channel F3 over channel F2 in terms

of classification performance. In fact, the performance of channel F3 approaches

that of channel F1 for low noise power in Figure 80.

Figures 81, 82, and 83 demonstrate that the resulting performance from using

channel F3 features may be significantly greater than using channel F2 features

irregardless of the correlation of the faded components. These figures also reinforce

the strong performance of channels utilizing phase information. It. is important to

note, however, that classification performance of a channel with an unknown mul-

tiplicitive component (channel F3) may approach the performance of a channel

which maintains absolute amplitude as well as target phase information (chan-

nel Fl). As the faded components become increasingly uncorrelated in Figures 81
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and 83 respectively, the performance of channel F3 degrades, but. still provides

relatively good classification performance at low noise powers.

Direct. comparison of the three faded channels in term of classification per-

formance resulted in several interesting results. Most importantly, the superior

performance of channel F1 indicates that. phase information concerning the target

is maintained even for relatively small deterministic weights (a = 0.5, 0.75). There-

fore, a system which can accurately estimate intrinsic target phase is still desired

even if the propagation path is subject to a. degree of mullipath interference. Sec-

ond, the study indicates that under certain frequency band, deterministic weight.,

and correlation conditions, the removal of the unknown multiplicitive component.

from the output, of channel F3 provides a set. of features whose classification perfor-

mance rivals that of channel F1, and is better than the performance of channel F2.

Frequency bands of 4 MHz, deterministic weight.s of 0.75, and highly correlated

faded components tend to accentuate the normalized features compared to other

conditions.

It. is important to note that given a propagation pat.li modeled by these con-

ditions, which are far from ideal in the RTI sense, classification may be performed

using only relative RCS values. Furthermore, having the ability to estimate ab-

solute RCS would not provide an increase in performance. In fact, the use of

the corrupted amplitude estimates without normalization would seriously degrade

classification performance (Figure 81). In this case, even the ability to estimate

target. phase would only decrease the misclassification percentage by four or five

percent. at. low noise power levels.

Overall, the study has indicated that. if one is given a nultipath propagated

signal, there is little need of a calibrated reference t.o estimate absolute RCS.

Rather, a stationary uncalibrated reference may be utilized t.o estimate relative
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RCS of the target to be used for classification purposes.

126



Parameter Under Observa iion: (ha nnel uChannel Model: Key

Azimuth angle: 45 5
Start Frequency: 8.0 MIlz
Stop Frequency: 10.0 Mltz
Number of Frequencies: 10
Deterministic Weight: 0.9
Correlation Coefficient: 0.5
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Figure 73: IHighly deterministic 2 MHz band channel study.
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Parameter Uinder Observation: Ch1~annel
Channel Model: Key
Azimuth angle: 45
Start. Frequency: 8.0 MHz
Stop Frequency: 10.0 Mhz
Number of Frequencies: 10
Deterministic Weight: 0.75
Correlation Coefficient: 0.5
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Parameter U~nder Ob~servation: Chian nel
Channel Model: Key
Azimuth angle: 45
Start Frequency: 8.0 MHz
Stop Frequency: 10.0 MHz
Number of Frequencies: 10

- Deterministic Weight: 0.5
Correlation Coefficient: 0.5
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Figure 75: Iligbly faded 2 Mflz bamnd chiannel study.
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Paramneter IT11er Observal ion: Channe
Channel Model: Key
Azimuth angle: 45
Start Frequency: 8.0 MHz
Stop Frequency: MHz
Number of Frequencies: 10

- Deterministic Weight: 0.9
Correlation Coefficient: 0.001
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Paramneter ITn der Observation: Chiannel
Chiannel Model: Key
Azimuth angle: 45
Start. Frequency: 8.0 M11z
Stop Frequency: 10.0 M11z
N umnber of Frequencies: 10
Deterministic Weight: 0.9
Correlation Coefficient: 0.05
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Parameter U~nder Ohservai o?: Chiannel
Channel Model: Key
Azimuth angle: 45
Start, Frequency: 8.0 Iv01lz
Stop Frequency: 10.0 Mliz
Number of Frequencies: 10
Deter minis tic Weight: 0.9
Correlation Coefficient: x,
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Parameter Ulnder Observat iow:(I Chn ielChannel Model: Key
Azimuth angle: 0
Start Frequency: 8.0 M11z
Stop Frequency: 12.0 MHz
Number of Frequencies: 10
Deterministic Weighit: 0.7.5
Correlation Coefficient: 0.5
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Pa rameterV I T11ider Observatioll:(haulI
Azimuth angle: 0
Start. Frequency: 8.0 MlHz
Stop Frequiency: 12.0 Mhlz
Number of Frequiencies: 10
Deterministic Weight: 0.5
Correlation Coefficient: 0.5
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Parameter Uiider Observation: Channel
Channel Model: Key
Azimuth angle: 0
Start Frequency: 8.0 MHz "
Stop Frequency: 12.0 MIlz
Number of Frequencies: 10
Deterninistic Weight: 0.75
Correlation Coefficient: 0.1
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Figure 81: Correlated 4 Mhtz band channel stud.y.
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Parameter UTnder Observalion: Chanuel
Channel Model: Key
Azimuth angle: 0
Start Frequency: 8.0 MHz
Stop Frequency: 12.0 Mllz
Number of Frequencies: 10
Deterministic Weight: 0.75
Correlation Coefficient: 2
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Figure 82: Slighly correlated 4 Mtz band channel study.
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Parnim-er Under Observaioin: Cihmtic-.
Channel Model: Key
Azimuth angle: 0
Start Frequency: 8.0 MHz 
Stop Frequency: 12.0 Mltz
Number of Frequencies: 10
Deterministic Weight: 0.75
Correlation Coefficient:
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Figure 83: Uncorrelated 4 Mtl1z band chlimec study.
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CHAPTER VIII

CONCLUSIONS

A study of existing HF radar systems with respect, to use as a measurement

facility has l)een conducted. Examination of a HF skywave radar system has led

to the incorporation of two classes of channel models, the Gaussian and fading

channel models. Further variations of the channels within each class simulated the

possible restrictions which the external environment and propagation path might I

place on the measurement system in terms of the estimation of various target

features. As a result, relationship between the various channels and classification
.'

performance in terms of various radar system parameters were found. I

The simulation studies have demonstrated that classification performance is

largely dependent on the size of the frequency band for all channel models im- S,

plenented. Moreover, the results have indicated that when tie frequency band 

is extremely limited ( < 2 MHz), classification performance may be improved by

increasing the number of frequencies at. which target, features are estimated. Ther-

fore, if one is restricted to a small frequency band, performance may be increased

at the cost of additional processing time.

The fading channel models simulated the effect of multipath propagation on

the RTI system. Results indicated that without phase information, the estimation

of absolute RCS feature may not lead to additional classification performance over

the estimation of relative RCS features. Therfore, there would be no advantage in
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I

having a calibrated reference which would allow the estimation of absolute Rn'S.

A variety of channels have been simulated. In order to further evaluate classi-

fication performance, data from existing HF radar systems is desired. Given a large

set. of Doppler spectral estimates containing familiar aircraft., several techniques

may be investigated to estimate various features of the targets. A comparison of

these estimates would provide insight, into the statistical properties of real esti-

mates. In addition, a comparison of these estimates with those simulated from

the ElectroScience Laboratory data base would provide a lnea sure of how accu-

rately the ba-ckscatter coefficients measured on the compact range represent those

measured in real HF radar system.

' iS
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